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N U M E R I C A L  S O L U T I O N  OF  T H E  S T E F A N  P R O B L E M  

W I T H  A V A R I A B L E  P H A S E - T R A N S I T I O N  T E M P E R A T U R E  

Yu. V .  G u r k o v  and A.  G. P e t r o v a  UDC 517.958 

The purpose of this paper is to realize a numerical method for solving two-dimensional Stefan problems 
in which the free boundary is not a level line. The calculations are based on the method of lines which reduces 
a multidimensional problem to a sequence of one-dimensional free boundary problems, which are, in turn, 
reduced to a system of first-order ordinary differential equation by means of a Riccati transform. In this case, 
the location of the free boundary for each line is found as a root of some scalar equation. The fundamentals 
of the method are developed in [1, 2]. 

In this paper, the method is used to solve two-dimensional two-phase free-boundary problems with 
various boundary conditions at both the lateral boundaries of the rectangular domain considered and the 
free boundary. Application of this method to the solution of problems with several free boundaries is also 
described. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We assume that the Iree boundary between the solid and liquid 
phases in domain D = [0,1] x [0,1] is defined by the equation y = 8(z,~), where s(x,  t) has the first and 
second continuous space derivatives and the first continuous time derivative. We seek the functions u(z,  y, t),. 
U(z ,  y, t), and s(x,  t) subject to the following conditions: 
the heat conduction equations for the liquid and solid phases, respectively, 

ut = k l A u  for 0 < z < 1, 

Ut = k s A U  for 0 < z < 1, 

the condition at the free-boundary 

u = u = t )  - q .  

and the Stefan condition 

~v = k lau /an  - ksaU/an  

0 < y < s(z ,O,  t > o ,  

s(x, t )  < y < 1, t > O ,  

for y = .s(x,t), 

for y = s ( z ,  t), 

where ~r, q, A, kt, and ks are fixed positive constants; n = ( - sz (x ,  t), 1)/V/~, + 1 is the normal vector to the 

free boundary; v = (Os/Ot)/9/ '~, + 1 is the normal velocity of the free boundary; and p(z, t) is the curvature 
radius of the free boundary. 

The first term of the condition at the free boundary takes into account the influence of the free 
boundary curvature on the phase-transition temperature (the Gibbs-Thomson condition). The second term is 
the so-called kinetic condition, which is used since in the supercooled Stefan problem with a constant melting 
point an abrupt increase in gradients is possible in a finite time (gradient catastrophe). The free boundary 
is propagating at an unbounded speed in this case. The kinetic condition takes into account that the phase- 
transition temperature is proportional to the free-boundary propagation velocity, and this makes it possible 
to eliminate the effects described above. Many papers have been devoted to problems with such conditions, 
in particular, [3-5]. 
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Dirichlet conditions for the functions u and U are specified at the lower (y = 0) and upper (y = 1) 
boundaries of the domain considered. At the lateral boundaries, the normal derivatives of the functions u 
and U are assumed to be equal to zero or Dirichlet conditions are specified. The formulation of the problem 
is completed by specifying the initial distributions for u and U and the initial location of the free boundary 

y = 0 ) .  
2. A p p r o x i m a t i o n  of  t h e  P r o b l e m .  To reduce our problem to a series of one-dimensional problems 

with free boundaries for the time level t , ,  we approximate the second derivatives of the functions u, U, and 
s with respect to x by central differences: 

u z z ( x i ,  y , t n )  = Ui+l ' - -2ui  "4-ui-1 { A x  = i /N~ ,  i = 1, ,Nz - 1, 
A z  2 ' . . .  

s x z ( z i , t , )  = si+l - 2si + si-1 i A z  = i / N : ,  i = 1, Nz  - 1. 
AZ2 ' . . . ,  

To approximate the t ime derivative, we use a "backward" difference approximation: 

ttt(Xi, y,  tn) -~ Ui -- Ui,n-1 $t(Zi, tn) = ai -- Si,n-1 
A t  ' A t  

The conditions at the free boundary are approximated by 

dtt  B i ' I ' l ( 8 i I ' l )  - t t i - l ( 8 i - 1 ) "  (2.1) 
d--'z (z i ,  si ,  tn) = 2 A z  ' 

Os si+l - si-1 (2.2) 
~ x  ( x i ' t n )  = 2 A z  

If the functions u and U are specified at the lateral boundaries, we use one-side difference 
approximations for the free-boundary conditions: 

du 4 U l ( S l )  - -  B2(32)  - -  3u0(s0) 
d--x (xo, so, tn) = 2Az ' 

d-'~du (XN, sN,  tn) = - -4UN-I (SN-1)  + UN-2(SN-2)2Ax + 3uN(sN) . ,  (2.1') 

�9 Os 431 - -  32 - -  330  Os --4SN-I + SN-2 -}- 3SN 
Ox (z0, t , )  = - -  (2.2') 
- -  2 A x  ' Ox ( zg ,  t . )  = 2 A x  

Using the identity 

d 

to approximate the derivative us at the free boundary, we obtain 

t tz(Xi, Y , tn)  = t t i + l ( S i + l )  - -  Ui- l (S i -1 )  "~i+1 - -  Si-1 
2 A z  - uy 2 A z  

In the case of Dirichlet conditions at the lateral boundaries for i = 0 and i = N, the corresponding 
expressions are easily obtained using formulas (2.1') and (2.2% The same reasoning can be extended with no 
changes to the functions Ui. 

Thus, we have a system of linear differential equations for the functions ui(y) and Ui(y) 

Li( tL i )  = U i - -  ~ X  2 Ui = Fi(tLi,n-1, u i - 1 ,  U i + l )  oi l  (0 ,  s i ) ,  

1] 
- - + = o n  1 ) ,  

where 

Fi(ui ,n-1,  U i - l ,  U i + l )  = 
(U i+ l  q- Ui-1) Ui.n-1. 

m 

A x  2 k l A t  ' 
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Fi(Ui,n-1, Ui-1 Ui+l) = (Ui+I .-.t- Ui-1) Ui,n-1 
' A x  2 k sh t  

with the following conditions at the free boundary y = si: 

Or(.~i-1 -- 2.si + .Si+l) Si -- ,Si,n-1 
u = U = Ax2(1 + S~2) 3/2 -- q At(1 + st2) 1/2 '  

I ~ ( ~ i i S i l n l  1 ) : ( k  s - -  k l  ) du ,2 , At  -~x (xi, si, t , )  s~ -- (1 + s i )(kiui(si ) - ksU~(si)). 

Here du/dx  and s~ are given by formulas (2.1) and (2.2). This system of one-dimensional problems with free 
boundaries will be denoted by A. 

3. A l g o r i t h m  of  N u m e r i c a l  Solu t ion .  The system of one-dimensional problems with free boundaries 
for finding the functions ui(y) and Ui(y) and the constant si at the time level t = tn is solved by a successive 
over-relaxation method with the iterations 

k+l  Li(ui) = Fi(ui,n-1,'ui_ lk+l, tti+l) , k  r k+l  = uik + w(~i - u~i) for y E (0, s, ); (3.1) 

Li(Ui)=Fi(Vi , ,_a ,U~+l ,U~+l) ,  U . k i + l = u i k + w ( V i - U i  k) fo r  y E ( s k + X , 1 ) ,  (3.2) 

where w e [1,2) is an iteration parameter; i E [0, N] if Neumann conditions are applied at the lateral boundaries 
of the domain considered, and i E [1, N - 1] for Dirichlet conditions. The location of the free boundary on 
the ith line s~ +l, where i varies from zero to N, is found as a root of the scalar equation given below for both 
Neumann conditions at the lateral boundaries and Dirichlet conditions. This equation is solved by the method 
of linear interpolation between the grid points y. Thus, the system of problems with free boundaries A for 
determining the functions ui(y) and Ui(y) and the numbers si at the level t = in is reduced to a sequence. 
of problems (3.1) and (3.2); we denote it by {A k+~ } and solve for a fixed k by moving successively from i to 
i + 1 .  

Each problem A/~+1 
transform. Let 

[i.e., (3.1) and (3.2)1 will be solved, in accordance with [11, by using a R.iccati 

~ ( v )  = v~(v), ~ (v )  = nt(v)v~(v) + ~z,~(v), 

and, similarly, 

u~(v) = �88 u~(v) = Rs(v)t4(v) + ws,~(v). 

Dropping the subscripts i and k, we write the Cauchy problems for the functions Rt(y) and wt,i(y): 

= 1 - R~ ~ + , R(0) = 0; (3.3) 

~I = - n z  ~ + ,~ + Rtr ,  ~z(0) = ~ , (x ,0 . t . ) .  (3.4) 

The problems for determining Rs(y)  and ws,~(y) are written in a similar way. 
The first-order explicit Runge-Kut ta  method for a fixed uniform grid is used for numerical solution of 

these problems. 
_k+l in the line x = xi for i E [1,N - 1] can be found as a root of The location of the free boundary ~i 

the scalar equation 

~(y) ~ J i - t - ~ i - - l ]  +1 [ kll(y) iwl(y)k~ ks I(y)-Ws(y)]-RT(-~ ] 

- k o k + l -  k 
Ui+l -- O, - -  / "si+I - - ~  / ( , S L 1 )  _ _ .  k+ll~ " i - 1  t ~  S A y -- ,gi,n-1 

t ~ j (k t  - ks)  2 A x  ~, t  

where I ( v )  = ~'(V) = U (V)  = _<~(..k+i _ 2V + ,~_+~)/[A~2(1 + ~,2)3/2]_ q (V _ ~ i . . _~ ) / [A t (1  + .,2)~/2] and. in 
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accordance with (2.2), s '= ( sh ,  - s~+~)/2Ax. For i =  0, this equation has the form 

r  [[ 4slk-2~xs2k - 3Y] 2 + 1] [kluv(O,y,t,,) - k~Uv(O,y,t,,)] 

- - ~  . ( k t -  ks) 2 a ~  a t  

The equation for i = N will be obtained in a similar way. 
In our work, the root of the equation r = 0 was found by linear interpolation between two 

neighboring grid points y, the grid point y nearest to the root being taken as the desired value of s~ +1 
If the equation r  = 0 had several roots, the root nearest to the location of the free boundary in the 
previous iteration was chosen as a rule. 

Determination of the functions v(y) and V(y) as solutions of the Cauchy problems is the next step: 

0 < y < si, 

s i < y < l ,  

At Az 2 ' 

v(si) = I(si)  - wt(si). (3.5) 

R, Csi) ' 

w.(v)  - =~,.-~(v) ,,~+~(y) - =~-~(y) + 2~ , (v )  
At Az2 ' 

vCs~) = I ( sd  - ~ , (s~)  (3.6) 
Rs(si)  

Cauchy problems (3.5) and (3.6) are solved numerically in the same way as problems (3.3) and (3.4), 
and the value of Ui+l(y) is taken from the previous iteration. 

The solution of the problem A t'+l is completed by reconstructing -2+1 "i (y) and Uit+l(y) using the 
formulas 

u~+l(v)  = n~(v)v~(v) + ~ , i ( v ) ,  U~+'(v)  = n , (V)~(V)  + ~,,~(V). 

4. A n a l y s i s  of  C o n v e r g e n c e .  The convergence of the iterative process was studied numerically. The 
root-mean-squ ~re norm of the difference between temperature-function values corresponding to two successive 
iterations was used as a criterion for estimation. In this case, the following results were obtained. Depending 
on the initial and boundary conditions, the norm was reduced by a factor of 3-10 in one iteration, with the 
original norm of the order of 10 -2. In problem 2 (Section 6), the residual was of the order of 10 -3. Variations 
of Az, Ay, and At within reasonable limits did not have any considerable influence on the convergence, but it 
should be noted that  the best results were obtained for the relation Ay = Ax/lO. The parameter w was chosen 
in accordance with minimization of the above criterion in each particular problem. A beneficial influence of 
surface tension (a > 0) and kinetic supercooling (q > 0) on the stability of the free-boundary form in the 
supercooled problem (Section 6, problem 5) was noted. 

5. M u l t i f r o n t  P r o b l e m s .  The method in question can be used for solution of multifront problems. 
We illustrate this using as an example a problem with two free boundaries. 

Let domain [0,1] 2 be divided by two free boundaries: y = S 1 (Z, t) and y = s2(x, t). We seek to find the 
functions ul(x, y, t), u2(z, y, t), ua(z, y, t), sl(x, t), and s2(z, t) subject to the following conditions: 
the heat conduction equations 

(t t l) t  = k l A u  1 in (0,1) x (0,$1),  
(u2), = k2Au2 in (0,1) x (sl ,s2),  
(u3)t = k3Au3 in (0,1) x (s2,1), 
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the conditions at the free boundaries 
0-1 o'2 

Ul ---- u2 ---- p l (x , t )  qlvl on Sl, us =- u3 ---- ps(x , t )  q202 o n  s2 ,  

c3ul Ous Ous c9u3 
- , h v ~ = k l - ~ n - k s ~  on sl, - , h v s = k : ~ - k 3 ~  on s2. 

Dirichlet and Neumann conditions can be applied at the lateral boundaries,  and Dirichlet conditions 
can be applied at the boundaries y = 0 and y = 1. The s ta tement  is completed by specification of initial 
conditions. 

The calculations will be performed as follows. Let the superscript k/> 1 denote the number of iterations 
made at one t ime level. We assume tha t  ul  k - l ,  U k - l ,  U k - l ,  .~1 k- l ,  and s2 k-1 are already known. Let us first 
consider domain [0,1] x [0, s2 k-l]  and apply to it the iteration procedure described in Sections 2 and 3 to find a 
new location of the free boundary  and a new temperature distribution. It should be noted that  the iterations 
made within the framework of this procedure are inner and are not related to the iterations denoted by k. The 
only difference in application of this procedure is that  it was previously used in a rectangular domain, and 
here one boundary  of the domain is curvilinear. This, however, does not prevent realization of this algorithm, 
because it is based on the method  of lines. The condition at the curvilinear boundary  of the domain remains a 
Dirichlet condition, because it represents either the temperature-function value in this curve that  is taken from 
the previous i teration if the phase-transit ion temperature is not constant,  or, otherwise, the phase transition 
temperature.  

Thus,  a new location of the free boundary sl and a new distribution of the temperatures Ul and us 
are obtained. Similarly, considering domain [0,1] • [s~ -~, 1], we find s2, fi2, and u3. Then we assume that  

~ = ~ - '  + , ~ , ( ( ~ s  + a s ) / 2 -  ~- ' )  
tt k ~_ tt k - 1  - 4 - ~ l ( U  3 - - U  k - l )  

where Sl k = s~ -1 + wx(sa - s~ -1) and s2 k = s k -1  3 t- Wl(.~2 - s2k-a).  

on (0, ~), 

on (~, ~), 

on (~, I), 

The iterative process is continued until  a satisfactory result is obtained, and then the next t ime level 
is used. 

6. R e s u l t s  o f  N u m e r i c a l  C a l c u l a t i o n s .  
(1) Single-Phase Problem with Surface Tension (Fig. 1): 

u(~ ,  y, o) = 1 - y / (0 .5  - 0.25 cos (~x ) ) ,  u ( ~ ,  y, o) = o, 

s(x,O)=0.5-0.25cos(Trx), u(z ,O, t )=l ,  V(x , l , t )=O.  

The zero-flux condition is specified at the lateral boundaries x = 0 and x = 1, 

Kl = K s  = 1, a = 0.001, q = 0, A = 1, w = 1.3, dx = 0.04, dy = 0.004, dt = 0.05. 

Figure 1 shows the front propagation with time. 
(2) "Traveling Wave" (Fig. 2): 

u(x,y,O)=exp(16(y + x / 2 - 0 . 7 5 ) ) -  l, U(x,y,O)=O, s ( x , 0 ) = - x / 2 + 0 . 7 5 ,  

Kl = 2, 

u(x, 0, t) = exp (16(x/2 - 0.75 + 20t)) - 1, U(x, 1, t) = O, 

u(O,y,t) = exp(16(y - 0.75 + 20t)) - 1, U(O,y,t) = 0, 

u(1,y , t )=exp(16(y-O.25+ 20t))-  l, U(1,y,t)=O, 

Ks = 2, a = q = 0.001, A = 1, w = 1.5, dx = 0.04, dy = 0.004, dt = 0.018. 

The front propagation with t ime is shown in Fig. 2. 
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(3) Two-Phase  Prob lem with Surface Tension and Dynamic Supercooling (Fig. 3): 

u(x, y, O) = 1 - y / ( 0 . 5  - 0.125 cos (a-x)),  a (x ,  O) = 0.5 - 0.125 cos (a-z), 

U(x,y,O) = -1  + ( y -  1 ) / ( - 0 . 5  - 0.125cos(a-x)),  u(z,O,t) = 1 + 2 0 t ,  

zero flux is specified at the lateral boundaries  x = 0 and x = 1, 

K l = K s = l ,  a = 0 . 0 0 1 ,  q = 0 . 0 0 0 1 ,  , ~ = 1 ,  w = 1 . 5 ,  dx=0.04, 

Figure 3 gives the location of the free boundary  at various times. 
(4) Two-Phase  Problem with Two Fronts (Fig. 4): 

s ] ( z ,  O) = 0.2 + 0.1 cos ( r z ) ,  s2(x  , O) = 0 . 8  - -  0 . 1  COS (Trx), 

u](x,y,O)= l--y/(O.2 +O.lcos(a-x)), u2(z,y,O)=O, 
u3(z,y,O)= l - ( y - 1 ) / ( - O . 2 - O . l c o s ( a - x ) ) ,  ui(x ,O,t)= l, ua (x , l , t )=  l, 

zero flux is specified at the  lateral boundaries  x = 0 and x = 1, 

kl = 0 . 1 ,  k 2 = 0 . 2 ,  k a = 0 . 1 ,  0 .1=q1 =0-001,  

A 2 = 0 . 8 ,  w = 1 . 3 ,  w 1 = 1 . 3 ,  dz=0.05,  

Figure 4 shows the propagat ion of the fronts. 
(5) Problem with Initial Supercooling (Fig. 5): 

,,(=, v, o) = - 1  + y / ( 0 5  - 0.125 cos (a-=)), 

U(x, y, O) = -1  + (y - 1 ) / ( - 0 . 5  - 0.125 cos (a'x)), 

U(z, 1,t) = - 1  - 20t, 

dy = 0.004, dt = 0.018. 

)~1 = 0.8, 0"2 = q2 = 0.001, 

dy = 0.005, dt = 0.005. 

s(=, o) = 0 5  - 0 1 2 5  cos (a-=), 

u ( = , o , t )  = - 1 ,  u ( = , l , t )  = - 1 ,  
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zero flux is specified at the lateral boundaries z = 0 and z = 1, 

K l  = K s  = 1, a = 0.001, q = 0.001, $ = 1, w = 1.5, dz = 0.04, dy = 0.004, dt = 0.018. 

Figure 5 gives the location of the free boundary at various times. 
The authors wish to express their gratitude to A. F. Voevodin for discussions of this work. 
This work was supported by the Russian Foundation for Fundamental Research (Grant 93-013-17945). 
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